Research Info

Home \A New Approach in Predicting ...
Title
A New Approach in Predicting Gas Adsorption Isotherms and Isosteric Heats Based on Two-Dimensional Equations of State
Type Article
Keywords
Not Record
Abstract
The present study provides a modified approach in determining gas adsorption equilibria based on two-dimensional equations of state (2-D EOS). The proposed model utilizes temperature-dependent parameters in the general form of the 2-D EOS. These parameters were considered similar to other well-known isotherm models, such as Langmuir as specifics function of temperature. The proposed model was examined against various experimental single- and multi-component adsorption isotherm data. In most of the investigated cases, the proposed model reduces the error of predictions compared with temperature-independent two-dimensional equations of state. Moreover, utilizing temperature-dependent two-dimensional equations of state, isosteric heat of adsorption was theoretically obtained and compared with experimental heats of adsorption for different homogeneous and heterogeneous adsorption systems. Applying temperature-dependent parameters within 2-D EOS enables us to describe the heterogeneity of considered adsorption systems quite well. Predicted isosteric heats are in good accordance with the experimental data.
Researchers Ali Bakhtyari (First researcher) , Masoud Mofarahi (Second researcher)