April 30, 2024
Ali Mohammad Sanati

Ali Mohammad Sanati

Academic Rank: Assistant professor
Address:
Degree: Ph.D in Environmental - Pollution
Phone: 07731222231
Faculty: Persian Gulf Research Institue

Research

Title Optimization of Crude Oil Biodegradation by Brevibacterium sp. Isolated from the Native Sponges of the Persian Gulf
Type Article
Keywords
Associated bacteria, Dictyonella Sp, Gas Chromatography, Taguchi method
Journal Iranian Journal of Biotechnology
DOI 10.30498/IJB.2021.2690
Researchers Mandana Zarei (Second researcher) , Ali Mohammad Sanati (Third researcher)

Abstract

Background: The native sponges of Persian Gulf are unique species facing difficult climate conditions and environmental contamination. It is necessary to investigate these native sponges because global warming most probably destroyed many of these creatures. Therefore, the study of the microorganisms associated with sponges will introduce new bacterial strains with various industrial and environmental applications and, in this way, a part of the Persian Gulf biodiversity will be preserved for posterity. Objective: The aim of this study was the isolation and molecular identification of bacteria associated with the ability of biodegrading crude oil from the native sponges of the Persian Gulf. Also, optimization of crude oil biodegradation was done for one of the most efficient bacterial strains. Materials and Methods: Isolated species were compared in terms of E24 index and growth rate in a culture medium containing at least 2% of oil as the sole carbon source. Molecular identification was done for five bacterial strains. Using the Taguchi experimental design, the effects of 4 factors, namely, carbon source auxiliary, organic and inorganic nitrogen sources, salinity and pH, were evaluated at 3 levels. GC-Mass analysis was performed on the remaining oil in the culture medium.. Results: In the initial screening of two native species of sponges, 22 bacterial strains were isolated which were capable of decomposing oil. Five bacterial strains showed the best results and were recorded in NCBI with access numbers KY283126, KY283128, KY285290, KY285289, and KY285288. Brevibacterium sp. (KY283128) showed the highest level of oil degradation (about 97%) and growth rate. The results showed that the optimal oil degradation occurs in the absence of carbon source auxiliary, at 0.5% of salinity, with NH4Cl as the nitrogen source and at a pH of 6.5. Conclusions: This bacterial strain can be used for biodegradation in oil-contaminated areas and oil refineries. By isolating the oil deg