May 2, 2024
Amin Keshavarz

Amin Keshavarz

Academic Rank: Associate professor
Address: Faculty of Engineering, Persian Gulf University, Bushehr, Iran
Degree: Ph.D in Civil Engineering
Phone: +98-7731222158
Faculty: Faculty of Engineering

Research

Title Pullout behavior of a bearing polymeric strap under monotonic and cyclic tensile loads
Type Article
Keywords
Pullout, Polymeric strap, Geosynthetics, Multistage pullout test, Cyclic tensile load
Journal GEOTEXTILES AND GEOMEMBRANES
DOI 10.1016/j.geotexmem.2022.08.004
Researchers Sajad Razzazan (First researcher) , Mansour Mosallanezhad (Second researcher) , Amin Keshavarz (Third researcher)

Abstract

Soil-reinforcement interaction consists of three factors including frictional resistance, shear strength of the soil and passive resistance. In the ordinary polymeric strap (PS) reinforcement, only frictional resistance contributes to pullout resistance. In this study, in order to develop passive resistance in the soil, a number of angles as transversal elements were attached to PS reinforcement, which is called bearing polymeric strap (BPS). The post-cyclic pullout behaviour of the BPS is evaluated using a large-scale pullout apparatus adopting multistage pullout (MSP) test and one-stage pullout (OSP) test procedures. The results show that a spacing-to-high ratio of angles equal to 3.33 gives the maximum pullout resistance. MSP tests were performed on the BPS with an optimum arrangement to evaluate the influence of various factors including cyclic tensile load amplitude, load frequency and number of load cycles, and also the influence of vertical effective stress on the pullout resistance and the peak apparent coefficient of friction mobilized at the soil-BPS interface. Moreover, for BPS system with a single isolated transverse member, the bearing capacity factor Nq was calculated using equations based on three failure modes and it was found that the Nq calculated in the punching shear failure mode makes the best prediction.