April 29, 2024
Amin Keshavarz

Amin Keshavarz

Academic Rank: Associate professor
Address: Faculty of Engineering, Persian Gulf University, Bushehr, Iran
Degree: Ph.D in Civil Engineering
Phone: +98-7731222158
Faculty: Faculty of Engineering

Research

Title Pullout behavior of polymeric strip in compacted dry granular soil under cyclic tensile load conditions
Type Article
Keywords
Geosynthetics,Post-cyclic pullout behavior,Interface apparent coefficient of friction,Multistage pullout (MSP) test
Journal Journal of Rock Mechanics and Geotechnical Engineering
DOI 10.1016/j.jrmge.2018.04.007
Researchers Sajad Razzazan (First researcher) , Amin Keshavarz (Second researcher) , Mansour Mosallanezhad (Third researcher)

Abstract

Assessment of the reinforcement behavior of soil under cyclic and monotonic loads is of great importance in the safe design of mechanically stabilized earth walls. In this article, the method of conducting a multistage pullout (MSP) test on the polymeric strip (PS) is presented. The post-cyclic behavior of the reinforcement can be evaluated using a large-scale pullout apparatus adopting MSP test and one-stage pullout (OSP) test procedures. This research investigates the effects of various factors including load amplitude, load frequency, number of load cycles and vertical effective stress on the peak apparent coefficient of friction mobilized at the soil-PS interface and the pullout resistance of the PS buried in dry sandy soil. The results illustrate that changing the cyclic tensile load frequency from 0.1 Hz to 0.5 Hz does not affect the pullout resistance. Moreover, the influence of increasing the number of load cycles from 30 to 250 on the peak pullout resistance is negligible. Finally, the effect of increasing the cyclic tensile load amplitude from 20% to 40% on the monotonic pullout resistance can be ignored. The peak apparent coefficient of friction mobilized at the soil-PS interface under monotonic and cyclic load conditions decreases with the increase in vertical effective stress.