April 29, 2024
Shahriar Osfouri

Shahriar Osfouri

Academic Rank: Professor
Address:
Degree: Ph.D in Chemical Engineering
Phone: 88019360
Faculty: Faculty of Petroleum, Gas and Petrochemical Engineering

Research

Title
Simulation of Dye-Sensitized Solar Cells: Toward Improving Efficiency and Performance
Type Presentation
Keywords
Dye-sensitized solar cells, Electron transfer, Recombination, Numerical simulation
Researchers Nasim Dehghani (First researcher) , Ahmad Jamekhorshid (Second researcher) , Tahmineh Jalali (Third researcher) , Shahriar Osfouri (Fourth researcher)

Abstract

To achieve high efficiency and stability in dye-sensitized solar cells (DSSCs), it is crucial to optimize porosity by maximizing the surface area available for dye absorption and charge transport, while minimizing charge carrier recombination through the use of appropriate materials and interfaces. This study presents a numerical simulation that incorporates charge carrier transport and recombination to investigate the impact of changes in porosity and recombination rate on DSSC performance. The results indicate that increasing porosity enhances performance by increasing the surface area for dye adsorption and light absorption. However, excessively high porosity can lead to lower efficiency due to increased recombination losses. Finding the optimal porosity for a specific DSSC system is critical for achieving high efficiency and stable performance. A model porosity of 0.4 was determined to be optimal. Moreover, increasing the recombination rate can significantly reduce DSSC efficiency, underscoring the importance of minimizing recombination losses in device design.