April 29, 2024
Amin Oujifard

Amin Oujifard

Academic Rank: Associate professor
Address:
Degree: Ph.D in FISHERIES
Phone: 09173775889
Faculty: Faculty of Nano and Biotechnology

Abstract

Decreasing low molecular weight can improve the digestibility and availability of ingredients such as sodium alginate. This study aimed to test the four dosages of low molecular weight sodium alginate (LMWSA) (0%: Control, 0.05%: 0.5 LMWSA, 0.10%: 1.0 LMWSA, and 0.2%: 2.0 LMWSA) in whiteleg shrimp (Litopenaeus vannamei) (3.88  0.25 g) for eight weeks. After finishing the trial, shrimp were exposed to cadmium (1 mg/L) for 48 h. While feed conversion ratio (FCR) improved in shrimp fed dietary 2.0 LMWSA (p < 0.05), there was no significant difference in growth among treatments. The results showed a linear relation between LMWSA level and FCR, and glutathione S-transferase (GST) before; and malondialdehyde (MDA), glutathione (GSH), GST, and alanine transaminase (ALT) after cadmium stress (p < 0.05). The GST,MDA, ALT, and aspartate transaminase (AST) contents were changed after stress but not the 2.0 LMWSA group. The survival rate after stress in 1.0 LMWSA (85.23%) and 2.0 LMWSA (80.20%) treatments was significantly higher than the Control (62.05%). The survival rate after stress negatively correlated with GST and ALT, introducing them as potential biomarkers for cadmiumexposure inwhiteleg shrimp. Accordingly, the 2.0 LMWSAtreatment had the best performance in the abovementioned parameters. As the linear relation was observed, supplementing more levels of LMWSA to reach a plateau is recommended.