10 فروردین 1403
پرويز ملك زاده

پرویز ملک زاده

مرتبه علمی: استاد
نشانی: دانشکده مهندسی - گروه مهندسی مکانیک
تحصیلات: دکترای تخصصی / مهندسی مکانیک
تلفن: 077-31222166
دانشکده: دانشکده مهندسی

مشخصات پژوهش

عنوان
تحلیل دینامیکی پانلهای مخروطی متخلخل تقویت شده با گرافن پلاکتی به صورت هدفمندمدرج با مرزهای مقیدکشسان تحت بار انفجاری
نوع پژوهش پارسا
کلیدواژه‌ها
: تحلیل دینامیکی؛ پانل های مخروطی؛ تخلخل؛ مواد هدفمند؛ گرافن پلاکتی؛ بار انفجاری؛ مرزهای مقید کشسان؛ تئوری برشی مرتبه سوم؛ مدل میکرومکانیکی هالپین-تسای؛ روش آماری میدان تصادفی گاوسی؛ روش نیومارک؛ روش دیفرانسیل کوادریچر.
پژوهشگران سعیده بیع آتی (دانشجو) ، محمدرضا گل بهار حقیقی (استاد راهنما) ، پرویز ملک زاده (استاد راهنما) ، یاسین حیدرپور (استاد مشاور)

چکیده

In this thesis, the dynamical behavior of functionally graded (FG) porous graphene platelets reinforced composite (GPLRC) truncated conical panels with elastically restrained against rotation edges under blast loading is studied based on a constrained third-order-shear deformation theory (TSDT). Different distribution types of graphene platelet (GPL) and porosity, including uniform and FG distributions, are considered. The material properties of the FG panels vary along the thickness continuously, based on the power-law distribution. Mechanical properties of the closed-cell cellular solids under Gaussian Random Field scheme are applied to characterize the variation of Poisson's ratio and the relationship between porosity coef?cients and mass density. The elastic modulus of the composite panels is obtained by employing the Halpin-Tsai micromechanics model. In real terms, the fully clamped boundary conditions are not existing. Therefore, the panels with elastically restrained against rotation edges are considered. In an air-blast, there are two phases, called positive and negative. According to literature, since this study explores the effects of intense blast loading, only the positive phase is considered. The modi?ed Friedlander equation is used for modelling the blast load. The system of motion equations in the linear elastic behavior range is derived by using Hamilton’s principle. The system of governing differential equations is discretized in the space and time-domain, respectively, using differential quadratic (DQ) and Newmark methods. For verification of the present results, a comparative fundamental frequency analysis of FG carbon nanotube-reinforced composite (FG-CNTRC) plates and panels is conducted and the dynamic transverse displacements of a laminated glass plate under different blast loading are compared with those in the existing literature. There is a good accord in all compared cases. Then, the effects of volume fraction of GPLs, thickness-to-length