15 آذر 1404
رضا آذين

رضا آذین

مرتبه علمی: استاد
نشانی: دانشکده مهندسی نفت، گاز و پتروشیمی - گروه مهندسی نفت
تحصیلات: دکترای تخصصی / مهندسی نفت
تلفن: -
دانشکده: دانشکده مهندسی نفت، گاز و پتروشیمی

مشخصات پژوهش

عنوان 3D-printed synthetic core plugs: Advancing laboratory simulations for enhanced oil recovery
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
3D printing; Synthetic core plug; Wettability measurements; EOR; Core flooding tests; Fluid displacement efficiency
مجله Results in Engineering
شناسه DOI 10.1016/j.rineng.2025.105077
پژوهشگران رضا آذین (نفر اول) ، فاطمه کاظمی (نفر دوم) ، سید طه حسینی (نفر سوم) ، نویدی علی (نفر چهارم) ، شهریار عصفوری (نفر پنجم) ، آلکسی چرکاسوف (نفر ششم به بعد) ، الکسی خلویپین (نفر ششم به بعد) ، کریل گرکه (نفر ششم به بعد) ، مارینا کارسرینا (نفر ششم به بعد)

چکیده

Synthetic core plugs are critical for petrophysical and enhanced oil recovery (EOR) studies, as natural cores are expensive, scarce, and heterogeneous. This study investigates whether 3D-printed synthetic cores can replicate the wettability, permeability, and fluid displacement efficiency of natural reservoir rocks under simulated subsurface conditions to address this, resin-based cores were fabricated via stereolithography (SLA) 3D printing for gas-condensate applications. Contact angle measurements revealed neutral wettability to water (θ = 109.6°) and strong wetting to condensate (θ = 0°). Core flooding experiments with glycerol under flow rates (0.5–3 cc/min) and overburden pressures (500–1500 psi) demonstrated absolute permeability of 18–44 Darcy, stabilizing at 40 Darcy after slicing oblique cross-sections. Nitrogen flooding achieved 88% recovery at 10 bar pressure, validating displacement efficiency. Mechanical stability tests confirmed structural robustness under reservoir-like pressures, while thermal analysis (DSC/TGA) confirmed polymer stability up to 200°C. By integrating wettability control, permeability analysis, and flooding validation, this work advances 3D-printed core design for EOR simulations, bridging idealized models and heterogeneous reservoirs. The results highlight their potential to replace natural cores, offering customizable analogs for optimizing gas injection strategies and reducing reservoir modeling uncertainties. This framework enables scalable, cost-effective testing of EOR techniques while minimizing environmental impacts from core extraction.