01 دی 1403
حسين حق بين

حسین حق بین

مرتبه علمی: استادیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه آمار
تحصیلات: دکترای تخصصی / آمار
تلفن: 077322
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Functional time series forecasting: Functional singular spectrum analysis approaches
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
climate change, nonparametric forecasting, nonstationary time series, prediction
مجله Stat
شناسه DOI https://doi.org/10.1002/sta4.621
پژوهشگران جردن ترینکا (نفر اول) ، حسین حق بین (نفر دوم) ، هان لین شانگ (نفر سوم) ، مهدی معدولیت (نفر چهارم)

چکیده

We introduce two novel nonparametric forecasting methods designed for functional time series (FTS), namely, functional singular spectrum analysis (FSSA) recurrent and vector forecasting. Our algorithms rely on extracted signals obtained from the FSSA method and innovative recurrence relations to make predictions. These techniques are model-free, capable of predicting nonstationary FTS and utilize a computational approach for parameter selection. We also employ a bootstrap algorithm to assess the goodness-of-prediction. Through comprehensive evaluations on both simulated and real-world climate data, we showcase the effectiveness of our techniques compared to various parametric and nonparametric approaches for forecasting nonstationary stochastic processes. Furthermore, we have implemented these methods in the Rfssa R package and developed a shiny web application for interactive exploration of the results.