01 دی 1403
حبيب رستمي

حبیب رستمی

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه مهندسی کامپیوتر
تحصیلات: دکترای تخصصی / کامپیوتر
تلفن: 0773
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان A New Support Vector Machine and Artificial Neural Networks for Prediction of Stuck Pipe in Drilling of Oil Fields
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
ثبت نشده‌است!
مجله JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
شناسه DOI
پژوهشگران حبیب رستمی (نفر اول) ، عباس خاکسار منشاد (نفر دوم)

چکیده

Stuck pipe is known to be influenced by drilling fluid properties and other parameters, such as the characteristics of rock formations. In this paper, we develop a support-vector-machine (SVM) based model to predict stuck pipe during drilling design and operations. To develop the model, we use a dataset, including stuck and nonstuck cases. In addition, we develop radial-base-function (RBF) neural network based model, using the same dataset, and compare its results with the SVM model. The results show that the performance of both models for prediction of stuck pipe does not differ significantly and both of them have highly accurate and can be used as the heart of an expert system to support drilling design and operations.