01 دی 1403
حبيب رستمي

حبیب رستمی

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه مهندسی کامپیوتر
تحصیلات: دکترای تخصصی / کامپیوتر
تلفن: 0773
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Application of Artificial Neural Network–Particle Swarm Optimization Algorithm for Prediction of Gas Condensate Dew Point Pressure and Comparison With Gaussian Processes Regression–Particle Swarm Optimization Algorithm
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
ثبت نشده‌است!
مجله JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
شناسه DOI
پژوهشگران عباس خاکسار منشاد (نفر اول) ، حبیب رستمی (نفر دوم) ، سید معین حسینی (نفر سوم) ، حجت رضایی (نفر چهارم)

چکیده

For gas condensate reservoirs, as the reservoir pressure drops below the dew point pressure (DPP), a large amount of valuable condensate drops out and remains in the reservoir. Thus, prediction of accurate values for DPP is important and leads to successful development of gas condensate reservoirs. There are some experimental methods such as constant composition expansion (CCE) and constant volume depletion (CVD) for DPP measurement but difficulties in experimental measurement especially for lean retrograde gas condensate causes to develop of different empirical correlations and equations of state for DPP calculation. Equations of state and empirical correlations are developed for special and limited data sets and for unseen data sets they are not generalizable. To mitigate this problem, in this paper we developed new artificial neural network optimized by particle swarm optimization (ANN-PSO) for DPP prediction. Reservoir fluid composition, temperature and characteristics of the C7 considered as input parameters to neural network and DPP as target parameter. Comparing results of the developed model in this research with Gaussian processes regression by particle swarm optimization (GPR-PSO), previous models and correlations shows that the predictive model is accurate and is generalizable to new unseen data sets.