01 دی 1403
حبيب رستمي

حبیب رستمی

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه مهندسی کامپیوتر
تحصیلات: دکترای تخصصی / کامپیوتر
تلفن: 0773
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان
A Novel Convolutional-Transformer Neural Network Architecture for Diagnosis of Pneumothorax
نوع پژوهش مقالات در همایش ها
کلیدواژه‌ها
Pneumothorax , Deep Learning, Medical Image Processing
پژوهشگران امیر صنعتی (نفر اول) ، منصوره عبیدلی دشتستانی (نفر دوم) ، حبیب رستمی (نفر سوم) ، سعید طلعتیان آزاد (نفر چهارم)

چکیده

Pneumothorax is a life-threatening and urgent chest disease than can be detected using Chest X-Ray (CXR) image. CXR images are low resolution and diagnosis of pneumothorax based on them is error prone. Deep learning-based computer aided diagnosis systems can improve diagnosis performance of pneumothorax. Convolutional Neural Networks (CNNs) are default networks in deep learning-based medical image process. However, CNNs fail to capture long range features. On the other side, Transformer are proposed to exploit long range feature, but they cannot capture local features. In this paper, we propose a general method with a convolution and a transformer module which can classify CXR images to diagnose pneumothorax by extracting local features, global features and global features attended by local ones using a novel architecture. Results show that the proposed method outperforms base architectures and the other previous works.