04 آذر 1403
عليرضا عطايي

علیرضا عطایی

مرتبه علمی: استادیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه ریاضی
تحصیلات: دکترای تخصصی / ریاضی کاربردی
تلفن: 07731223315
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان ELRL-MD: a deep learning approach for myocarditis diagnosis using cardiac magnetic resonance images with ensemble and reinforcement learning integration
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Keywords: myocarditis, imbalanced classification, ensemble convolutional neural network, reinforcement learning, artificial bee colony algorithm
مجله PHYSIOLOGICAL MEASUREMENT
شناسه DOI 10.1088/1361-6579/ad46e2
پژوهشگران عادل میرزا مقدم کسمایی (نفر اول) ، علیرضا عطایی (نفر دوم) ، سید وحید مروج (نفر سوم) ، روح الله علیزاده حسنی (نفر چهارم) ، جو آن گوریز (نفر پنجم) ، یو دانگ ژانگ (نفر ششم به بعد) ، رو - سان تان (نفر ششم به بعد) ، یو راجندرا آکاریا (نفر ششم به بعد)

چکیده

Objective. Myocarditis poses a significant health risk, often precipitated by viral infections like coronavirus disease, and can lead to fatal cardiac complications. As a less invasive alternative to the standard diagnostic practice of endomyocardial biopsy, which is highly invasive and thus limited to severe cases, cardiac magnetic resonance (CMR) imaging offers a promising solution for detecting myocardial abnormalities. Approach. This study introduces a deep model called ELRL-MD that combines ensemble learning and reinforcement learning (RL) for effective myocarditis diagnosis from CMR images. The model begins with pre-training via the artificial bee colony (ABC) algorithm to enhance the starting point for learning. An array of convolutional neural networks (CNNs) then works in concert to extract and integrate features from CMR images for accurate diagnosis. Leveraging the Z-Alizadeh Sani myocarditis CMR dataset, the model employs RL to navigate the dataset’s imbalance by conceptualizing diagnosis as a decision-making process. Main results. ELRL-DM demonstrates remarkable efficacy, surpassing other deep learning, conventional machine learning, and transfer learning models, achieving an F-measure of 88.2% and a geometric mean of 90.6%. Extensive experimentation helped pinpoint the optimal reward function settings and the perfect count of CNNs. Significance. The study addresses the primary technical challenge of inherent data imbalance in CMR imaging datasets and the risk of models converging on local optima due to suboptimal initial weight settings. Further analysis, leaving out ABC and RL components, confirmed their contributions to the model’s overall performance, underscoring the effectiveness of addressing these critical technical challenges.