15 آذر 1404
ابوذر بازياري

ابوذر بازیاری

مرتبه علمی: استادیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه آمار
تحصیلات: دکترای تخصصی / آمار
تلفن: -
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Asymptotic Ruin Probabilities in a Dependent Perturbed Integrated Risk Process with Application
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Affine process , Asymptotic ruin probability, Girsanov's theorem, Heavy-tailed distribution, Perturbed integrated risk model
مجله Journal of Statistical Modelling: Theory and Applications
شناسه DOI https://jsm.yazd.ac.ir/article_3943.html
پژوهشگران ابوذر بازیاری (نفر اول)

چکیده

The present paper investigates two types of perturbed integrated risk models to compute the asymptotic ruin probabilities‎: ‎(i) the risk model which is perturbed by log-return rate‎, ‎jump process‎, ‎and Brownian motion process with dependent structure between the insurance risk and investment risk when the claim sizes are pairwise strong quasi-asymptotically independent‎. ‎For this model‎, ‎we assume that the heavy-tailed claim sizes and return jumps are caused by the systematic factors with an arbitrarily dependent structure; (ii) the risk model in which the underlying price process is a geometric Brownian motion‎, ‎and the jump diffusion process is modeled by a dependent Affine process when the claim sizes are asymptotically independent‎. ‎For both dependent models‎, ‎the asymptotic ruin probabilities are obtained using mathematical approaches‎. ‎Moreover‎, ‎some numerical studies with Monte Carlo simulation using the Farlie-Gumbel-Morgenstern copula as the joint distribution function of claim sizes and return jumps are provided to verify the performance of asymptotic results‎. ‎Some of the results show that‎, ‎under the framework of regular variation with dependence structure‎, ‎the asymptotic finite-time ruin probability is insensitive to the claim sizes.