December 22, 2024
Abouzar Bazyari

Abouzar Bazyari

Academic Rank: Assistant professor
Address:
Degree: Ph.D in -
Phone: -
Faculty: Faculty of Intelligent Systems and Data Science

Research

Title Ruin related quantities in a class of state-space compound binomial models
Type Article
Keywords
Compound binomial risk model; Homogenous claim occurrences; Ruin probability; Time to ruin
Journal Journal of Statistical Modelling: Theory and Applications
DOI 10.22034/jsmta.2023.19051.1066
Researchers Abouzar Bazyari (First researcher)

Abstract

The main focus of this paper is to extend the analysis of some ruin related problems to a class of state-space compound binomial risk models for a sequence of independent and identically distributed random variables of interclaim times when the claim occurrences are homogeneous. First, we obtain the mass function of a defective renewal sequence of random {Fn}n≥0-stopping times, using the compound binomial of aggregate claim amount together the net profit condition, and compute the infinite time ruin probability with Markov property of risk process. Moreover, we derive the distribution of the time to ruin among many random variables associated with ruin us- ing the convolution of claim amount and Lagrange’s implicit function theorem. Lastly, the theoretical results are illustrated with numerical computations.