November 22, 2024
Seyed Abdollatif Hashemifard

Seyed Abdollatif Hashemifard

Academic Rank: Associate professor
Address: .
Degree: Ph.D in مهندسی شیمی
Phone: 09177755574
Faculty: Faculty of Petroleum, Gas and Petrochemical Engineering

Research

Title Predicting the structural parameters of integrally skinned porous membranes
Type Article
Keywords
Journal JOURNAL OF MEMBRANE SCIENCE
DOI
Researchers Seyed Abdollatif Hashemifard (First researcher) , A. F. Ismail (Second researcher) , Nidal Hilal (Fourth researcher)

Abstract

The objectiveofthisstudyistoproposeanovelapproachforpredictingthestructuralparametersof integrallyskinnedporousmembranesusinggaspermeationdata.Itisintendedtoovercomethe limitation oftheconventionalgaspermeationtesting(GPT)method,sincethelattermethodseemsto suffer fromseveralconceptualdrawbacks.Inparticular,acomparisonismadebetweenthetheoretical calculation andtheexperimentaldatatoshowthesuperiorityofthenewlyproposedmodel.Thenew model isamodification ofWakaoetal.0s model,inwhich,unliketheconventionalGPTmethod,the contribution oftheslip flow isconsidered.AlthoughWakaoetal.0s modelwasfoundsuperiortothe conventionalGPTmethod,themodel fitting totheexperimentaldatawasnotcompletelysatisfactory.It waslikelythattheslip flow,althoughitseffectcannotbeneglected,isnotfullydeveloped.Therefore,a factor ? is introducedtoshowtheextentofthecontributionoftheslip flowmechanismtothetotalgas permeation rate.Asaresult,thenewmethodcanovercometheshortcomingsoftheconventionalGPT method bymanifestingthefollowingadvantages:(i)itcancovertheentirerangeof J versus P diagram, (ii) itcanspecifythecontributionoftheindividualmechanismsinvolvedinthetotalgaspermeationand (iii) unliketheconventionalGPTmethod,itisnotlimitedbyanyconstraintsorconditionsofdata acquisition.Insummary,themodelcanpredictporesizeandeffectiveporosity,andalsosimulatethe experimental J versus P trends withsufficient accuracy(within 2% overthepressurerangestudied)for all typesofmembranes,i.e.NF,UF,MF,MDandmembranecontactors.Inviewofthisfact,theproposed model issimplertoapplythanRangarajanetal.0s modelandmoreaccuratethantheconventionalGPT method.