01 آذر 1403
احمد كشاورز

احمد کشاورز

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه مهندسی برق
تحصیلات: دکترای تخصصی / مهندسی برق- مخابرات سیستم
تلفن: 09173731896
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان A Fast Spatial–Spectral Preprocessing Module for Hyperspectral Endmember Extraction
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
ثبت نشده‌است!
مجله IEEE Geoscience and Remote Sensing Letters
شناسه DOI
پژوهشگران فاطمه کوکبی (نفر اول) ، حسن قاسمیان (نفر دوم) ، احمد کشاورز (نفر سوم)

چکیده

Mixed-pixel decomposition of a hyperspectral image is developed on the basis of extracting unique constituent elements known as endmembers (EMs) and their abundance fraction estimation. Recently, integration of spatial content and spectral information is applied by means of several preprocessing modules (PPs) with the purpose of improving EMextraction (EE) accuracy and decreasing EE time. In this letter, a fast spatial–spectral preprocessing module is proposed, which determines the spectral purity score of pixels located at spatially homogenous regions. These homogenous regions including not spatial border pixels are identified using unsupervised k-means clustering technique and spatial neighborhood system. Afterward, a fraction of homogenous pixels (usually half) with greater spectral purity score is adopted as the best EM candidates for subsequent EEs. This novel PP is examined on synthetic and real AVIRIS data sets, which demonstrates its worthy performance in terms of accuracy and fast computation time.