November 22, 2024
Arash Khosravi

Arash Khosravi

Academic Rank: Assistant professor
Address: Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr 75169, Iran
Degree: Ph.D in Chemical Engineering
Phone: 077-31222640
Faculty: Faculty of Petroleum, Gas and Petrochemical Engineering

Research

Title Fabrication and characterization of ceramic tubular composite membranes using slag waste materials for oily wastewater treatment
Type Article
Keywords
Tubular ceramic membrane, Blast furnace slag, Phosphorous slag, Oily wastewater treatment, Pore blocking, Valorization
Journal JOURNAL OF ENVIRONMENTAL MANAGEMENT
DOI https://doi.org/10.1016/j.jenvman.2024.122065
Researchers sina shiva (First researcher) , Arash Khosravi (Second researcher) , Mohsen Abbasi (Third researcher) , farzaneh mohammadi (Fourth researcher) , Mika Silanpaa (Fifth researcher)

Abstract

In this study, low-cost tubular ceramic membranes were fabricated by using waste slag and natural raw materials in order to decrease the manufacturing carbon footprints. The effects of incorporation of phosphorus slag (PS) and blast furnace slag (BFS) in the mullite-zeolite membrane body were investigated. The structural characteristics of the fabricated membranes were evaluated using X-ray diffraction (XRD), field emission–scanning electron microscopy (FESEM), atomic force microscopy (AFM), contact angle, porosity and average pore size analyses. Thermal and mechanical stability were studied by thermogravimetric analysis (TGA) and three-point bending test, respectively. The oily wastewater treatment tests revealed that an increase in the slag percentage from 0 to 30% leads to enhancing the permeate flux from 99 l m-2 h-1 to 349 l m-2 h-1 for PS-based tubular membrane and to 244 l m-2 h-1 for BFS-based tubular membrane under 1 bar applied. The chemical oxygen demand (COD) removal percentage of all membranes was reported almost 99% for oily wastewater feed with a COD concentration of 612 mg l-1. In addition, the investigation of membrane fouling mechanisms was carried out using Hermia models indicating that the best correlation with the experimental data is observed for the complete pore blocking model. This study presents experimental foundations aimed at enhancing the performance of affordable slag-based membranes, thus fostering their applicability in engineering contexts.