05 آذر 1403
احمد محمدي اسلامي

احمد محمدی اسلامی

مرتبه علمی: دانشیار
نشانی: دانشکده علوم و فناوری نانو و زیستی - گروه فیزیک
تحصیلات: دکترای تخصصی / فیزیک
تلفن: -
دانشکده: دانشکده علوم و فناوری نانو و زیستی

مشخصات پژوهش

عنوان Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
nanosensor; quantum emitter; FDTDmethod; plasmon, plexciton
مجله Scientific Reports
شناسه DOI https://doi.org/10.1038/s41598-023-38475-1
پژوهشگران آرزو فیروزی (نفر اول) ، آ آمفاوان (نفر دوم) ، رضا خرداد (نفر سوم) ، احمد محمدی اسلامی (نفر چهارم) ، تهمینه جلالی (نفر پنجم) ، نیاز علی (نفر ششم به بعد) ، کالین اوکان ادت (نفر ششم به بعد)

چکیده

A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.