November 24, 2024
Fazel Shojaei

Fazel Shojaei

Academic Rank: Assistant professor
Address:
Degree: Ph.D in Chemistry
Phone: 077
Faculty: Faculty of Nano and Biotechnology

Research

Title Remarkably high tensile strength and lattice thermal conductivity in wide band gap oxidized holey graphene C2O nanosheet.
Type Article
Keywords
Carbon nitride nanosheet, holey graphene, thermal conductivity
Journal Nanoscale Research Letters
DOI 10.1186/s11671-024-04046-0
Researchers Fazel Shojaei (First researcher) , Qinghua Zhang (Second researcher) , Xiaoying Zhuang (Third researcher) , Bohayra Mortazavi (Fourth researcher)

Abstract

Recently, the synthesis of oxidized holey graphene with the chemical formula C2O has been reported (J. Am. Chem. Soc. 2024, 146, 4532). We herein employed a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations to investigate the electronic, optical, mechanical and thermal properties of the C2O monolayer, and compared our findings with those of its C2N counterpart. Our analysis shows that while the C2N monolayer exhibits delocalized π-conjugation and shows a 2.47 eV direct-gap semiconducting behavior, the C2O counterpart exhibits an indirect gap of 3.47 eV. We found that while the C2N monolayer exhibits strong absorption in the visible spectrum, the initial absorption peaks in the C2O lattice occur at around 5 eV, falling within the UV spectrum. Notably, we found that the C2O nanosheet presents significantly higher tensile strength compared to its C2N counterpart. MLIP-based calculations show that at room temperature, the C2O nanosheet can exhibit remarkably high tensile strength and lattice thermal conductivity of 42 GPa and 129 W/mK, respectively. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the electronic and optical properties of C2O nanosheets, suggesting them as mechanically robust and highly thermally conductive wide bandgap semiconductors.