01 آذر 1403
غلامرضا احمدي

غلامرضا احمدی

مرتبه علمی: مربی
نشانی: دانشکده مهندسی جم - گروه مهندسی کامپیوتر (جم )
تحصیلات: کارشناسی ارشد / فناوری اطلاعات
تلفن: 07737646160
دانشکده: دانشکده مهندسی جم

مشخصات پژوهش

عنوان
تحلیل Big Data برای ردیابی حملات شبکه
نوع پژوهش مقالات در همایش ها
کلیدواژه‌ها
Big data, Detection, HDFS, MapReduce, NSL-KDD, KNN, SVM, LDA
پژوهشگران مرتضی جهان تیغ (نفر اول) ، غلامرضا احمدی (نفر دوم)

چکیده

One of the main challenges associated with analysis of big data is automatic detection systems that classify network traffic data. The aim of this paper is to consider design and implementation of intrusion detection systems (IDS) using several classification algorithms for big data analysis. Big data analysis techniques can extract information from a variety of sources to detect future unknown attacks. We use classification algorithms with MapReduce framework for mining IDS in Apache HTTP server on a Linux system. So that, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Linear Discriminant Analyses (LDA) classifiers are implied on NSL-KDD Dataset and compared them with some wellknown existing techniques for IDS. The results show that the average efficiency is high. The Minimum efficiency reporting value is 95% and maximum 97% by changing the parameters in the proposed model.