November 22, 2024
Hossein Eslami

Hossein Eslami

Academic Rank: Professor
Address:
Degree: Ph.D in Chemistry
Phone: 09100000000
Faculty: Faculty of Nano and Biotechnology

Research

Title Self-Assembly Mechanisms of Triblock Janus Particles
Type Article
Keywords
Journal Journal of Chemical Theory and Computation
DOI
Researchers Hossein Eslami (First researcher) ,

Abstract

We present a detailed model to study the nucleation of triblock Janus particles from solution. The Janus particles are modeled as cross-linked polystyrene spheres whose poles are patched with sticky alkyl groups and their middle band is covered with negative charges. To mimic the experimental conditions, solvent, counterions, and a substrate, on which the crystallization takes place, are included in the model. A many-body dissipative particle dynamics simulation technique is employed to include hydrodynamic and manybody interactions. Metadynamics simulations are performed to explore the pathways for nucleation of Kagome and hexagonal lattices. In agreement with experiment, we found that nucleation of the Kagome lattice from solution follows a two-step mechanism. The connection of colloidal particles through their patches initially generates a disordered liquid network. Subsequently, orientational rearrangements in the liquid precursors lead to the formation of ordered nuclei. Biasing the potential energy of the largest crystal, a critical nucleus appears in the simulation box, whose further growth crystallizes the whole solution. The location of the phase transition point and its shift with patch width are in very good agreement with experiment. The structure of the crystallized phase depends on the patch width; in the limit of very narrow patches strings are stable aggregates, intermediate patches stabilize the Kagome lattice, and wide patches nucleate the hexagonal phase. The scaling behavior of the calculated barrier heights confirms a first-order liquid-Kagome phase transition.