02 آذر 1403
حامد گرگين پور

حامد گرگین پور

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه مهندسی برق
تحصیلات: دکترای تخصصی / برق
تلفن: -
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Design of an L-Shaped Array Vernier Permanent Magnet Machine for Unmanned Aerial Vehicle Propulsion Using a Schwarz–Christoffel Mapping-Based Equivalent Magnetic Network Model
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Equivalent magnetic network model, flux barrier, L-shaped, magnetic permeance, Schwarz–Christoffel mapping, Vernier PM machine
مجله IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
شناسه DOI 10.1109/TIE.2023.3243307
پژوهشگران مهرج قدس (نفر اول) ، جواد فیض (نفر دوم) ، محمدامین بذرافشان (نفر سوم) ، حامد گرگین پور (نفر چهارم) ، محمدصدیق طولابی (نفر پنجم)

چکیده

The Vernier permanent magnet (VPM) machines supersede conventional permanent magnet synchronous machine (PMSM) topologies in terms of torque-density and cogging torque. This article presents a fractional-slot L-shaped magnet VPM machine, including peculiar designs for permanent magnet (PM) housing and rotor core construction for small-scale EVs such as unmanned aerial vehicles (UAVs). The idea for selecting the PM arrangement is based on combining the V-shaped and spoke-array PM topologies for achieving a higher torque-density than V-shaped PM machines and a lower cogging torque than spoke-array PM machines. The rotor core is created from nonintegrated segments to form the flux-barriers in end-portions of PM housings. In this way, the leakage flux lines in the end-portion of the PMs reduce, resulting in enhanced flux linkage and power factor. A 630 W, 12-slot/8-pole motor is designed and prototyped for model validation purposes. An innovative equivalent magnetic network model is established for analytical prediction of the performance of the machine. The Schwarz–Christoffel mapping is used to create the rotor core permeance network due to its special shaping. Two innovative pentagonal-shaped mesh cells are used in the air-gap region for more accurate capturing of flux behavior. The model is validated by comparing the results with the finite element results and experimental measurements.