01 دی 1403
حسين حق بين

حسین حق بین

مرتبه علمی: استادیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه آمار
تحصیلات: دکترای تخصصی / آمار
تلفن: 077322
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Arctan-Based Family of Distributions: Properties, Survival Regression, Bayesian Analysis and Applications
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
arctangent function; bayesian estimation; maximum likelihood; loss function; odd log-logistic distribution; survival regression; statistical distribution
مجله AXIOMS
شناسه DOI 10.3390/axioms11080399
پژوهشگران امید خوارزمی (نفر اول) ، مراد علیزاده (نفر دوم) ، جاویر ای کونتراس ریس (نفر سوم) ، حسین حق بین (نفر چهارم)

چکیده

: In this paper, a new class of the continuous distributions is established via compounding the arctangent function with a generalized log-logistic class of distributions. Some structural properties of the suggested model such as distribution function, hazard function, quantile function, asymptotics and a useful expansion for the new class are given in a general setting. Two special cases of this new class are considered by employing Weibull and normal distributions as the parent distribution. Further, we derive a survival regression model based on a sub-model with Weibull parent distribution and then estimate the parameters of the proposed regression model making use of Bayesian and frequentist approaches. We consider seven loss functions, namely the squared error, modified squared error, weighted squared error, K-loss, linear exponential, general entropy, and precautionary loss functions for Bayesian discussion. Bayesian numerical results include a Bayes estimator, associated posterior risk, credible and highest posterior density intervals are provided. In order to explore the consistency property of the maximum likelihood estimators, a simulation study is presented via Monte Carlo procedure. The parameters of two sub-models are estimated with maximum likelihood and the usefulness of these sub-models and a proposed survival regression model is examined by means of three real datasets.