Functional time series is a popular method of forecasting in functional data analysis. The Box-Jenkins methodology for model building, with the aim of forecasting, includes three iterative steps of model identification, parameter estimation and diagnostic checking. Portmanteau tests are one of the most popular diagnostic checking tools. In particular, they are applied to find if the residuals of the fitted model are white noise. Gabrys and Kokoszka [Portmanteau test of independence for functional observations. J Am Stat Assoc. 2007;102(480):1338–1348.] proposed a portmanteau test of independence for functional observation based on Box and Pierce's statistic. Their statistic is too sensitive to the lag value, specially when the sample size is small. Here, two modifications of Gabrys and Kokoszka statistic are presented, which have superior properties in small samples. The efficiency of the modified statistics is demonstrated through a simulation study.