14 آذر 1404
حسين حق بين

حسین حق بین

مرتبه علمی: استادیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه آمار
تحصیلات: دکترای تخصصی / آمار
تلفن: 077322
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Regularized multivariate functional principal component analysis for data observed on different domains
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Multivarate Functional Data, Regularization, Principal component analysis
مجله Foundations of Data Science
شناسه DOI 10.3934/fods.2025018
پژوهشگران حسین حق بین (نفر اول) ، یویی ژائو (نفر دوم) ، مهدی معدولیت (نفر سوم)

چکیده

Multivariate Functional Principal Component Analysis (MFPCA) is a valuable tool for exploring relationships and identifying shared patterns of variation in multivariate functional data. However, controlling the roughness of the extracted Principal Components (PCs) can be challenging. This paper introduces a novel approach called regularized MFPCA (ReMFPCA) to address this issue and enhance the smoothness and interpretability of the multivariate functional PCs. ReMFPCA incorporates a roughness penalty within a penalized framework, using a parameter vector to regulate the smoothness of each functional variable. The proposed method focuses on multivariate functional data on different domains and generates smoothed multivariate functional PCs, providing a concise and interpretable representation of the data. Extensive simulations and real data examples demonstrate the effectiveness of ReMFPCA and its superiority over alternative methods. The proposed approach opens new avenues for analyzing and uncovering relationships in complex multivariate functional datasets.