December 22, 2024
Hossein Haghbin

Hossein Haghbin

Academic Rank: Assistant professor
Address:
Degree: Ph.D in Statistics
Phone: 077322
Faculty: Faculty of Intelligent Systems and Data Science

Research

Title Functional time series forecasting: Functional singular spectrum analysis approaches
Type Article
Keywords
climate change, nonparametric forecasting, nonstationary time series, prediction
Journal Stat
DOI https://doi.org/10.1002/sta4.621
Researchers Jordan Trinka (First researcher) , Hossein Haghbin (Second researcher) , Han Lin Shang (Third researcher) , Mehdi Madouliat (Fourth researcher)

Abstract

We introduce two novel nonparametric forecasting methods designed for functional time series (FTS), namely, functional singular spectrum analysis (FSSA) recurrent and vector forecasting. Our algorithms rely on extracted signals obtained from the FSSA method and innovative recurrence relations to make predictions. These techniques are model-free, capable of predicting nonstationary FTS and utilize a computational approach for parameter selection. We also employ a bootstrap algorithm to assess the goodness-of-prediction. Through comprehensive evaluations on both simulated and real-world climate data, we showcase the effectiveness of our techniques compared to various parametric and nonparametric approaches for forecasting nonstationary stochastic processes. Furthermore, we have implemented these methods in the Rfssa R package and developed a shiny web application for interactive exploration of the results.