15 آذر 1404
حبيب رستمي

حبیب رستمی

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه مهندسی کامپیوتر
تحصیلات: دکترای تخصصی / کامپیوتر
تلفن: 0773
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان A publicly available pharyngitis dataset and baseline evaluations for bacterial or nonbacterial classification
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Deep Learning, Machine Learning, pharyngitis
مجله SCIENTIFIC DATA
شناسه DOI https://doi.org/10.1038/s41597-025-05780-5
پژوهشگران نگار شجاعی (نفر اول) ، حبیب رستمی (نفر دوم) ، محمد برزگر (نفر سوم) ، شکوه سادات فرزانه (نفر چهارم) ، زهره فرار (نفر پنجم) ، مجید علی محمدی (نفر ششم به بعد) ، جهانبخش کیوانی (نفر ششم به بعد) ، مهدی میرزاد (نفر ششم به بعد) ، لیلا گنبدی (نفر ششم به بعد)

چکیده

Accurate and early differentiation between bacterial and nonbacterial pharyngitis is crucial for optimizing treatment and minimizing unnecessary antibiotic use. The similar clinical presentation of sore throat in bacterial and nonbacterial infections poses significant diagnostic challenges, even for experienced clinicians. To address this, we developed a publicly available dataset consisting of high-resolution throat images captured using smartphone cameras. These images were analyzed through deep neural networks to distinguish between bacterial and nonbacterial infections based on visual features and symptoms. The dataset is the largest publicly available dataset in this field, which includes images from 742 patients experiencing common cold symptoms. For each patient, it also records the presence or absence of 20 symptoms, age, gender, and between 4 to 9 diagnoses by different physicians. Furthermore, three baseline models were established to differentiate bacterial from nonbacterial infections. Our goal is to enhance the field of non-invasive and accurate pharyngitis diagnosis, drive the development of AI-driven diagnostic tools, promote remote healthcare solutions, and inspire future innovations in medical image analysis.