November 23, 2024
Hossein Shirkani

Hossein Shirkani

Academic Rank: Assistant professor
Address:
Degree: Ph.D in Physics
Phone: 09173755086
Faculty: Faculty of Nano and Biotechnology

Research

Title Fabrication of a natural nanocomposite from Syzygium cumini and squid bone waste decorated with Cu-Nps for simultaneous use in the triple method of photodynamic/photothermal/chemotherapy
Type Article
Keywords
Syzygium cumini, squid bone waste, calcium carbonate, photothermal, photodynamic, chemotherapy
Journal Biomedical Materials
DOI 10.1088/1748-605X/ad909e
Researchers Mohsen Mehrabi (First researcher) , Ali Shaygan shirazi (Second researcher) , fatemeh gharib zadeh (Third researcher) , Hossein Shirkani (Fourth researcher) , Amirhossein ghaedi (Fifth researcher) , arezoo kharadmehr (Not in first six researchers)

Abstract

This work reports a new nano platform made from natural materials for phototherapy (PT) applications. For this purpose, calcium carbonate nanoparticles (NPs) derived from Persian Gulf squid bones as a drug carrier, Syzygium cumini (dye extracted from the fruit of the Persian Gulf trees) as a photosensitizer, and Doxorubicin as a chemotherapy (CHT) drug have been used. In addition, copper NPs were added to the above nanocomposition to increase the efficiency of photothermal (PTT) treatment. For PT, samples were irradiated by an 808 nm laser (1 W /cm − 2 ). The results show that nanocomposites play an influential role in the reactive oxygen species process, and an increase of 21 degrees in temperature during 15 min of laser radiation is effective in photodynamic (PDT)/PTT therapy. The drug loading capacity of the nanocomposite was calculated as 49%. This new nanocomposite for simultaneous PDT/PTT/CHT holds great promise for future cancer treatment due to its excellent potential in treatment and reduced systemic toxicity