04 آذر 1403
ميلاد جهانگيري

میلاد جهانگیری

مرتبه علمی: استادیار
نشانی: دانشکده مهندسی - گروه مهندسی عمران
تحصیلات: دکترای تخصصی / مهندسی عمران
تلفن: (+98) 77 3122 2372
دانشکده: دانشکده مهندسی

مشخصات پژوهش

عنوان Vibration-Based Structural Damage Detection Using the Interactive Autodidactic School Optimization Algorithm Based on an Energy-Dissipation Method
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Structural damage detection; modal strain energy; elastic energy dissipation; AMSE; IAS.
مجله International Journal of Structural Stability and Dynamics
شناسه DOI https://doi.org/10.1142/S0219455422501929
پژوهشگران میلاد جهانگیری (نفر اول) ، محمدعلی هادیان فرد (نفر دوم) ، محمد امیر نجفقلی پور (نفر سوم) ، مهدی جهانگیری (نفر چهارم)

چکیده

The conventional modal strain energy (MSE), as a practical objective function, su®ers from the lack of access to the damaged sti®ness matrix and uses the intact sti®ness matrix of the structure instead. To overcome the aforementioned de¯ciency of the MSE, this study proposes a reformed elastic strain energy-dissipation criterion called the \augmented modal strain energy" (AMSE) which is composed of relative di®erences of natural frequency and mode shape. In the AMSE not only the e®ects of the energy-dissipation criterion as a function of natural frequency but also the equilibria of the elastic strain energy as a function of mode shape are considered. Hereupon, the AMSE is implemented along with the interactive autodidactic school (IAS) optimization algorithm to investigate the e®ectiveness of the proposed identi¯cation method. In this regard, the AMSE is veri¯ed by assessing three benchmark truss and frame structures. The obtained results con¯rm the reliable performance of AMSE in both terms of intensi¯cation and diversi¯cation. Furthermore, it is observed that despite using noise-polluted modal data, the proposed AMSE not only identi¯es the damage location accurately, but also anticipates the extent of damage precisely. Consequently, the proposed energy-dissipation-based objective function (AMSE) is suggested, along with the IAS optimization algorithm, as a robust technique for the damage detection of structures.