November 25, 2024
Milad Jahangiri

Milad Jahangiri

Academic Rank: Assistant professor
Address: School of Engineering, Floor 2, Room 227.
Degree: Ph.D in Civil Engineering
Phone: (+98) 77 3122 2372
Faculty: Faculty of Engineering

Research

Title Innovative improvement towards steel plate shear walls employing the grid stiffeners along with the metallic yielding dampers
Type Article
Keywords
Steel plate shear wall, Metallic yielding dampers, Grid stiffener, Seismic analysis, Cyclic analysis, Pushover analysis.
Journal JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH
DOI https://doi.org/10.1016/j.jcsr.2024.109080
Researchers Mohsen Sadeghi (First researcher) , Sohrab Shoja (Second researcher) , Masoud Amin Safaei Ardakani (Third researcher) , Milad Jahangiri (Fourth researcher)

Abstract

The rehabilitation costs of steel plate shear walls (SPSWs) after earthquakes are highly expensive. Likewise, achieving an optimal balance design between stiffness and damping is challenging for engineers. To address the stated barriers, the current study proposes an efficient replaceable structural fuse between the infill panel and frame to enhance the seismic performance of the SPSWs. For this purpose, the grid stiffeners in conjunction with the metallic yielding dampers (MYDs) are employed to connect the infill plate to surrounding structural frames. To examine the seismic performance of the proposed structural model, the finite element models have been meticulously simulated under 16 different scenarios utilizing the ABAQUS engineering software. Then, the comprehensive pushover analyses besides the cyclic analyses are executed upon these models. The obtained results manifested that the proposed SPSW model not only improved the stress distribution across the infill plate but also ensured the maximum exploitation of its capacity. Furthermore, all structural models exhibited a resilience response in short seismic events, which led to the prevention of damage occurrence in structural and non-structural components of buildings. Remarkably, the structural models have resisted an increase in displacement equivalent to a drift of 5 %. Finally, compared with the conventional SPWSs, the proposed structural model illustrated a higher effective damping of 30 % and stiffness of 12 %, simultaneously. However, increasing the number of stiffened zones has not shown a tangible influence on the effective stiffness since the overall structural stiffness is governed by the weak links, which in this case are MYDs.