26 آبان 1403
محمود افشاري

محمود افشاری

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه آمار
تحصیلات: دکترای تخصصی / آمار
تلفن: 07731223328
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان TheOdd Log-Logistic Burr-X Family of Distributions:Properties and Applications
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Odd log-logistic-G family, Burr-X family, Maximum likelihood method, Least square method, Weighted least square method, Moments
مجله JOURNAL OF STATISTICAL THEORY AND APPLICATIONS
شناسه DOI https://doi.org/10.2991/jsta.d.210609.001;
پژوهشگران حمید کرمی کبیر (نفر اول) ، محمود افشاری (نفر دوم) ، مراد علیزاده (نفر سوم) ، هیثم یوسف (نفر چهارم)

چکیده

In this paper, a new class of distributions called the odd log-logistic Burr-X family with two extra positive parameters is intro-duced and studied. The new generator extends the odd log-logistic and Burr X distributions among several other well-knowndistributions. We provide some mathematical properties of the new family including asymptotics, moments, moment-generatingfunction and incomplete moments. Different methods have been used to estimate its parameters such as maximum likelihood,least squares, weighted least squares, Cramer–von-Mises, Anderson–Darling and right-tailed Anderson–Darling methods. Weevaluate the performance of the maximum likelihood estimators in terms of biases and mean squared errors by means of a sim-ulation study. Finally, the usefulness of the family is illustrated by means of three real data sets. The new models provide consis-tently better fits than other competitive models for these data sets. The new family is suitable for fitting different real data sets,the odd log-logistic Burr-X Normal model is used for modeling bimodal and skewed data sets and can be sued as an alternative tothe gamma-normal, beta-normal, McDonald-normal, Marshall-Olkin-normal, Kumaraswamy-normal, Zografos-Balakrishnanand Log-normal distributions.