26 آبان 1403
محمود افشاري

محمود افشاری

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه آمار
تحصیلات: دکترای تخصصی / آمار
تلفن: 07731223328
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Bayesian Estimation for Mean Vector of Multivariate Normal Distribution on the Linear and Nonlinear Exponential Balanced Loss Based on Wavelet Decomposition
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Bayes estimator; Soft shrinkage wavelet estimator; Linear and non linear exponential balanced loss; Stein's unbiased risk estimator
مجله International Journal of Wavelets Multiresolution and Information Processing
شناسه DOI https://doi.org/10.1142/S0219691324500310
پژوهشگران زیبا بتوندی (نفر اول) ، محمود افشاری (نفر دوم) ، حمید کرمی کبیر (نفر سوم)

چکیده

This paper addresses the problem of bayesian wavelet estimating the mean vector of multivariate normal distribution under a multivariate normal prior distribution based on linear and nonlinear exponential balanced loss functions. The covariance matrix of multivariate normal distribution is considered known. Bayes estimators of mean vector parameter of multivariate normal distribution are achieved. Then two soft shrinkage wavelet threshold estimators based on Stein's unbiased risk estimate ($SURE$) and bayes estimators are provided. Finally the performance of soft shrinkage wavelet estimator checked through simulation study and Electrical Grid Stability Simulated data set. Simulation and real data results showed the better performance of $SURE$ thresholds based on linear and nolinear exponential balanced loss functions compared to other classical wavelet methods. Also they showed better performance for $SURE$ threshold based on nonlinear exponential balanced loss function in multivariate normal distribution with small dimensions. \end{abstract}