26 آبان 1403
محمود افشاري

محمود افشاری

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه آمار
تحصیلات: دکترای تخصصی / آمار
تلفن: 07731223328
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان The New Odd Log-Logistic Generalised Half-Normal Distribution: Mathematical Properties and Simulations
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
ثبت نشده‌است!
مجله Pakistan Journal of Statistics and Operation Research
شناسه DOI
پژوهشگران موسی عبدی (نفر اول) ، محمود افشاری (نفر دوم) ، حمید کرمی کبیر (نفر سوم) ، مهدیه مظفری (نفر چهارم) ، مراد علیزاده (نفر پنجم)

چکیده

The new distributions are very useful in describing real data sets, because these distributions are more flexible to model real data that present a high degree of skewness and kurtosis. The choice of the best-suited statistical distribution for modeling data is very important. In this paper, A new class of distributions called the New odd log-logistic generalized half-normal (NOLL-GHN) family with four parameters is introduced and studied. This model contains sub-models such as half-normal (HN), generalized half-normal (GHN )and odd log-logistic generalized half-normal (OLL-GHN) distributions. some statistical properties such as moments and moment generating function have been calculated. The Biases and MSE’s of estimator methods such as maximum likelihood estimators , least squares estimators, weighted least squares estimators, Cramer-von-Mises estimators, Anderson-Darling estimators and right tailed Anderson-Darling estimators are calculated. The fitness capability of this model has been investigated by fitting this model and others based on real data sets. The maximum likelihood estimators are assessed with simulated real data from proposed model. We present the simulation in order to test validity of maximum likelihood estimators.