26 آبان 1403
مراد عليزاده

مراد علیزاده

مرتبه علمی: استادیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه آمار
تحصیلات: دکترای تخصصی / امار ریاضی
تلفن: 0
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Comparison of Subspace Dimension Reduction Methods in Logistic Regression
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Dimension reduction, Likelihood acquired direction, Sliced average variance estimation, Sliced inverse regression.
مجله Statistics, Optimization and Information Computing
شناسه DOI https://doi.org/10.19139/soic-2310-5070-1303
پژوهشگران سعید حیدری (نفر اول) ، محمود افشاری (نفر دوم) ، سعید طهماسبی (نفر سوم) ، مراد علیزاده (نفر چهارم)

چکیده

Regression models are very useful in describing and predicting real world phenomena. When the number of predictors in regression models is high, data analysis is difficult. Dimension reduction has become one of the most important issues in regression analysis because of its importance in dealing with problems with high-dimensional data. In this paper, the methods of diminishing the dimension of variables, which include the estimation of central subspace based on the inverse regression, the likelihood acquisition method and principal component analysis are considered. Using a real data associated with the dental problems the Logistic regression is fitted and the correct classification of the data computed. The simulation study is presented to compare the sufficient dimension reduction methods with each other.