: In this paper, a new class of the continuous distributions is established via compounding the
arctangent function with a generalized log-logistic class of distributions. Some structural properties
of the suggested model such as distribution function, hazard function, quantile function, asymptotics
and a useful expansion for the new class are given in a general setting. Two special cases of this
new class are considered by employing Weibull and normal distributions as the parent distribution.
Further, we derive a survival regression model based on a sub-model with Weibull parent distribution
and then estimate the parameters of the proposed regression model making use of Bayesian and
frequentist approaches. We consider seven loss functions, namely the squared error, modified squared
error, weighted squared error, K-loss, linear exponential, general entropy, and precautionary loss
functions for Bayesian discussion. Bayesian numerical results include a Bayes estimator, associated
posterior risk, credible and highest posterior density intervals are provided. In order to explore the
consistency property of the maximum likelihood estimators, a simulation study is presented via
Monte Carlo procedure. The parameters of two sub-models are estimated with maximum likelihood
and the usefulness of these sub-models and a proposed survival regression model is examined by
means of three real datasets.