01 آذر 1403
محمود باراني

محمود بارانی

مرتبه علمی: استادیار
نشانی: دانشکده علوم و فناوری نانو و زیستی - گروه شیمی
تحصیلات: دکترای تخصصی / نانوشیمی
تلفن: -
دانشکده: دانشکده علوم و فناوری نانو و زیستی

مشخصات پژوهش

عنوان Enhanced pollutant degradation via green-synthesized core-shell mesoporous Si@Fe magnetic nanoparticles immobilized with metagenomic laccase
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
ImmobilizationMagnetic nanostructureRecalcitrantWastewaterPolyethyleneMetagenomic laccase
مجله INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
شناسه DOI https://doi.org/10.1016/j.ijbiomac.2024.134813
پژوهشگران شهره آریایی نژاد (نفر اول) ، محمود بارانی (نفر دوم) ، مریم روستایی (نفر سوم) ، آزاده لهراسبی نژاد (نفر چهارم) ، قاسم محمدی نژاد (نفر پنجم) ، قاسم حسینی سالکده (نفر ششم به بعد)

چکیده

With rapid industrial expansion, environmental pollution from emerging contaminants has increased, posing severe ecosystem threats. Laccases offer an eco-friendly solution for degrading hazardous substances, but their use as free-form biocatalysts face challenges. This study immobilized laccase (PersiLac1) on green-synthesized Si@Fe nanoparticles (MSFM NPs) to remove pollutants like Malachite Green-containing wastewater and degrade plastic films. Characterization techniques (FTIR, VSM, XRD, SEM, EDS, BET) confirmed the properties and structure of MSFM NPs, revealing a surface area of 31.297 m2.g−1 and a pore diameter of 12.267 nm. The immobilized PersiLac1 showed enhanced activity across various temperatures and pH levels, retaining over 82 % activity after 15 cycles at 80°C with minimal leaching. It demonstrated higher stability, half-life, and decimal reduction time than free laccase. Under 1 M NaCl, its activity was 1.8 times higher than the non-immobilized enzyme. The immobilized laccase removed 98.11 % of Malachite Green-containing wastewater and retained 82.92 % activity over twenty cycles of dye removal. Additionally, FTIR and SEM confirmed superior plastic degradation under saline conditions. These findings suggest that immobilizing PersiLac1 on magnetic nanoparticles enhances its function and potential for contaminant removal. Future research should focus on scalable, cost-effective laccase immobilization methods for large-scale environmental applications.