Marine macroalgal sulfated fucose-containing polysaccharides, like fucoidan, have drawn significant attention due to their biotechnological potentials, such as anti-cancer, antioxidant, and anti-cholinesterase activities. The fucoidan derived from brown macroalgae Sargassum angustifolium species (FSA) was investigated for its cytotoxic effects and alterations in cell proliferation, and cell cycle-related gene expression in the present study occur on NB4 cell line. The results showed that FSA would induce p53, p21, pro-apoptotic genes and increase expression of the p15 gene as a cell arrest marker. Also, FSA inhibited the anti-apoptotic effect of the Bcl-2 gene and decreased dnmt-1 gene expression. FSA significantly exhibited potent 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (p<0.05) with an IC50 value of 0.157 mg/mL and showed moderate anti-acetylcholinesterase activity with an IC50 value of 1.20 μg/mL. These results indicated the potential of FSA for the development of therapeutic or preventive agents of cancer and Alzheimer’s disease mainly through cytotoxic effect and AChE (acetylcholinesterase) inhibition as well as additional antioxidant capacities.