December 4, 2024
Mohsen Nowrouzi

Mohsen Nowrouzi

Academic Rank: Associate professor
Address: Persian Gulf University
Degree: Ph.D in Environment - Environmental pollution
Phone: 09177827960
Faculty: Faculty of Nano and Biotechnology

Research

Title Life cycle analysis of the wastewater treatment system in Zabol Industrial Town: Environmental impacts, energy demand, and greenhouse gas emissions
Type Article
Keywords
Energy analysis; Life cycle assessment; Sustainable development; Wastewater treatment; Zabol Industrial Town
Journal Integrated Environmental Assessment and Management
DOI 10.1002/ieam.4942
Researchers Simineh Hootmirdoosti (First researcher) , Narjes Okati (Second researcher) , Mohsen Nowrouzi (Third researcher) , Malihe Erfani (Fourth researcher)

Abstract

Use of effective environmental remediation facilities represents a crucial strategy for water reclamation and addressing the challenges of water scarcity. The objective of this study was to assess the wastewater treatment system (WWTS) in Zabol Industrial Town using the life cycle assessment method. Primary data, collected annually for a functional unit of 1 m3 of wastewater treatment, were subjected to analysis using the ReCiPe, Cumulative Energy Demand, and Intergovernmental Panel on Climate Change (IPCC) methods. Human carcinogenic toxicity (50%), freshwater ecotoxicity (13%), and marine ecotoxicity (10%) were the primary environmental impacts due to the WWTS performance. The discharge of heavy metals during sludge generation, coupled with the consumption of natural gas and oil, especially for electricity production, were pivotal factors contributing to the environmental burdens observed. Furthermore, chemical oxygen demand (COD) (56.34%), electricity consumption (>15.47%), and total phosphorous (>4.49%) significantly threatened human health and ecosystem categories, while fossil fuel consumption had the greatest impact on resources. Nonrenewable fossil fuels, namely, natural gas (47.2%) and oil (38.27%), played a predominant role in the energy provision of the system. The IPCC analysis depicted the emissions of CO2 (86.77%) and CH4 (12.16%) stemming from the process of electricity generation. Based on the outcomes of the sensitivity analysis, implementing a 10% increase in COD yielded an increment in all impacts within the range of 1.40% to 6.83%. Given Iran's geographic location and the unique climatic conditions in Zabul, use of solar and wind energy to energize the WWTS can substantially alleviate its environmental burdens. This study presents a comprehensive framework for evaluating the environmental impact, energy consumption, and carbon footprint of a WWTS.