November 25, 2024
Mohammad Vaghefi

Mohammad Vaghefi

Academic Rank: Associate professor
Address:
Degree: Ph.D in Hydraulic Structures
Phone: 077-31342401
Faculty: Faculty of Engineering

Research

Title Effect of Mean Velocity-to-Critical Velocity Ratios on Bed Topography and Incipient Motion in a Meandering Channel: Experimental Investigation
Type Article
Keywords
180-degree bend; sediment transport; clear water; meandering channel; scour
Journal Water
DOI https://doi.org/10.3390/w13070883
Researchers Narges Moghadasi (First researcher) , Seyed Habib Musavi-Jahromi (Second researcher) , Mohammad Vaghefi (Third researcher) , Amir Khosrojerdi (Fourth researcher)

Abstract

As 180-degree meanders are observed in abundance in nature, a meandering channel with two consecutive 180-degree bends was designed and constructed to investigate bed topography variations. These two 180-degree mild bends are located between two upstream and downstream straight paths. In this study, different mean velocity-to-critical velocity ratios have been tested at the upstream straight path to determine the meander’s incipient motion. To this end, bed topography variations along the meander and the downstream straight path were addressed for different mean velocity-to-critical velocity ratios. In addition, the upstream bend’s effect on the downstream bend was investigated. Results indicated that the maximum scour depth at the downstream bend increased as a result of changing the mean velocity-to-critical velocity ratio from 0.8 to 0.84, 0.86, 0.89, 0.92, 0.95, and 0.98 by, respectively, 1.5, 2.5, 5, 10, 12, and 26 times. Moreover, increasing the ratio increased the maximum sedimentary height by 3, 10, 23, 48, 49, and 56 times. The upstream bend’s incipient motion was observed for the mean velocity-to-critical velocity ratio of 0.89, while the downstream bend’s incipient motion occurred for the ratio of 0.78.