15 آذر 1404
نيلوفر رنجبر

نیلوفر رنجبر

مرتبه علمی: مربی
نشانی: دانشکده مهندسی جم - گروه مهندسی کامپیوتر (جم )
تحصیلات: کارشناسی ارشد / مهندسی کامپیوتر
تلفن: 077
دانشکده: دانشکده مهندسی جم

مشخصات پژوهش

عنوان Explaining recommendation system using counterfactual textual explanations
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Explainable recommendation, Counterfactual explanation,Machine learning, Explainable AI, Recommender systems
مجله MACHINE LEARNING
شناسه DOI https://doi.org/10.1007/s10994-023-06390-1
پژوهشگران نیلوفر رنجبر (نفر اول) ، سعیده ممتازی (نفر دوم) ، محمد مهدی همایونپور (نفر سوم)

چکیده

Currently, there is a significant amount of research being conducted in the field of artificial intelligence to improve the explainability and interpretability of deep learning models. It is found that if end-users understand the reason for the production of some output, it is easier to trust the system. Recommender systems are one example of systems that great efforts have been conducted to make their output more explainable. One method for producing a more explainable output is using counterfactual reasoning, which involves altering minimal features to generate a counterfactual item that results in changing the output of the system. This process allows the identification of input features that have a significant impact on the desired output, leading to effective explanations. In this paper, we present a method for generating counterfactual explanations for both tabular and textual features. We evaluated the performance of our proposed method on three real-world datasets and demonstrated a +5% improvement on finding effective features (based on model-based measures) compared to the baseline method.