02 آذر 1403
كوروش قيصري

کوروش قیصری

مرتبه علمی: دانشیار
نشانی: دانشکده علوم و فناوری نانو و زیستی - گروه فیزیک
تحصیلات: دکترای تخصصی / فیزیک هسته ای-راکتور
تلفن: 07731222242
دانشکده: دانشکده علوم و فناوری نانو و زیستی

مشخصات پژوهش

عنوان Hot and average fuel sub-channel thermal hydraulic study in a generation IIIþ IPWR based on neutronic simulation
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Hot fuel sub-channel, Thermal hydraulic, Heat transfer coefficient, IPWR
مجله Nuclear Engineering and Technology
شناسه DOI 10.1016/j.net.2020.11.027
پژوهشگران رامین غلامعلی شاهی (نفر اول) ، حمیدرضا ونایی (نفر دوم) ، ابراهیم حیدری (نفر سوم) ، کوروش قیصری (نفر چهارم)

چکیده

The Integral Pressurized Water Reactors (IPWRs) as the innovative advanced and generation- III þ reactors are under study and developments in a lot of countries. This paper is aimed at the thermal hydraulic study of the hot and average fuel sub-channel in a Generation III þ IPWR by loose external coupling to the neutronic simulation. The power produced in fuel pins is calculated by the neutronic simulation via MCNPX2.6 then fuel and coolant temperature changes along fuel sub-channels evaluated by computational fluid dynamic thermal hydraulic calculation through an iterative coupling. The relative power densities along the fuel pin in hot and average fuel sub-channel are calculated in sixteen equal divisions. The highest centerline temperature of the hottest and the average fuel pin are calculated as 633 K (359.85 0C) and 596 K (322.85 0C), respectively. The coolant enters the sub-channel with a temperature of 557.15 K (284 0C) and leaves the hot sub-channel and the average sub-channel with a temperature of 596 K (322.85 0C) and 579 K (305.85 0C), respectively. It is shown that the spacer grids result in the enhancement of turbulence kinetic energy, convection heat transfer coefficient along the fuel sub-channels so that there is an increase in heat transfer coefficient about 40%. The local fuel pin temperature reduction in the place and downstream the space grids due to heat transfer coefficient enhancement is depicted via a graph through six iterations of neutronic and thermal hydraulic coupling calculations.Working in a low fuel temperature and keeping a significant gap below the melting point of fuel, make the IPWR as a safe type of generation eIII þ nuclear reactor.