Let G be a connected (molecular) graph with the vertex set V(G)={v1,⋯,vn}, and let di and σi denote, respectively, the vertex degree and the transmission of vi, for 1≤i≤n. In this paper, we aim to provide a new matrix description of the celebrated Wiener index. In fact, we introduce the Wiener–Hosoya matrix of G, which is defined as the n×n matrix whose (i,j)-entry is equal to σi2di+σj2dj if vi and vj are adjacent and 0 otherwise. Some properties, including upper and lower bounds for the eigenvalues of the Wiener–Hosoya matrix are obtained and the extremal cases are described. Further, we introduce the energy of this matrix.