December 4, 2024
Sedigheh Hashemnia

Sedigheh Hashemnia

Academic Rank: Associate professor
Address: Department of Chemistry, Faculty of Nano and Bioscience and Technology, Persian Gulf University, Bushehr 75169, Iran
Degree: Ph.D in Biochemistry
Phone: 07733441494
Faculty: Faculty of Nano and Biotechnology

Research

Title Introducing a new perspective for the electrochemical detection of cardiac troponin I in the presence of human serum albumin (HSA), cardiac troponin C (cTnC) and C-reactive protein (CRP) based on molecular modeling and electrocatalytic activity towards ascorbic acid
Type Article
Keywords
Cardiac troponin I (cTnI) Molecular docking Non-biological receptor Layered double hydroxide nanostructures (LDHNS) Electrochemical sensor Ascorbic acid
Journal MATERIALS TODAY CHEMISTRY
DOI https://doi.org/10.1016/j.mtchem.2023.101588
Researchers Zaynab Mokhtari (First researcher) , Sedigheh Hashemnia (Second researcher) , Soodeh Noroozi (Fourth researcher)

Abstract

Cardiac troponin I (cTnI) is a specific biomarker of myocardial damage. Several techniques have been reported for cTnI detection, which is based on immunoaffinity, aptamers, and molecular imprinting polymers. Using computational methods, we introduced a novel chemical receptor for cTnI, named tetrabromophenol blue (TBPB), which interacted with cTnI selectivity in the presence of human serum albumin (HSA), cardiac troponin C (cTnC) and C reactive protein (CRP). Employing TBPB as a chemical receptor, a novel electrochemical sensor was constructed for the electrochemical sensing of cTnI. A glassy carbon electrode surface was modified with layered double hydroxide nanostructures (LDHNS) and TBPB. The modified electrode showed electrocatalytic activity toward ascorbic acid (AA) in a phosphate buffer solution (pH 7.4). The results revealed that using AA as a signal enhancer for cTnI detection could be a good idea. The linear range (50.00e3.50  105 pM) and detection limit (2.77 pM) were calculated using differential pulse voltammetry to measure cTnI at the TBPB/meso-Fe/CoLDHNS/GCE in a pH 7.40 buffer solution containing 1 mM of AA. Firstly, based on our docking studies, TBPB showed a very low tendency towards HSA, cTnC, and CRP. Additionally, the selectivity of TBPB/meso-Fe/CoLDHNS/GCE for cTnI was studied electrochemically in the presence of HSA, cTnC, and CRP.