02 آذر 1403
شهريار عصفوري

شهریار عصفوری

مرتبه علمی: استاد
نشانی: دانشکده مهندسی نفت، گاز و پتروشیمی - گروه مهندسی شیمی
تحصیلات: دکترای تخصصی / مهندسی شیمی
تلفن: 88019360
دانشکده: دانشکده مهندسی نفت، گاز و پتروشیمی

مشخصات پژوهش

عنوان Electrochemical impedance spectroscopy analysis of dye-sensitized solar cells composed of electrospun composite photoanodes: A comparative study of natural and synthetic sensitizers
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
DSSC; EIS technique; natural dye; Syzygium cumini; transmission line model
مجله OPTIK
شناسه DOI 10.1016/j.ijleo.2024.171730
پژوهشگران جمال محمدیان (نفر اول) ، شهریار عصفوری (نفر دوم) ، تهمینه جلالی (نفر سوم) ، احمد جامه خورشید (نفر چهارم)

چکیده

In this study, a transmission line model is applied to the electrochemical impedance spectroscopy (EIS) data of the fabricated dye-sensitized solar cells (DSSCs) to evaluate the charge transfer mechanism through the cells. Natural dye from black plum (Syzygium cumini) fruit was used as a cell sensitizer (SC-DSSC) and compared its photovoltaic and electron transport capabilities to those of a cell using a synthetic sensitizer (N719-DSSC). TiO2/ZnO electrospun composite nanofibers were used as the semiconductor layer of the photoanode to enhance electron transfer. The EIS analysis revealed the role of electron resistances through shant, interfaces, and electrolyte solution by measuring the electron transfer kinetic parameters of each element. Based on the results, the SC-DSSC and N719-DSSC are appropriate photovoltaic cells because their ratios of effective electron diffusion length to photoanode thickness are 12.5 and 2.8, respectively. The EIS analysis showed that the electrospun composite nanofiber coated on the photoanode reduces the semiconductor layer's electrical resistance to the cell's total resistance. The extracted natural dye also boosted electron lifetime to 3.68 ms and diffusion coefficient to 54.3×10-6 m2/s while minimizing back-electron recombination at the semiconductor-electrolyte interface. Moreover, the semiconductor-electrolyte interface resistance is over 85% of the overall resistance for both DSSCs and controls electron transport through the cells, which is due to the dye-semiconductor binding intensity. Based on the photovoltaic data, the SC-DSSC cell efficiency was lower than N719-DSSC which is attributed to its higher electron transfer rate-controlling element. Thus, enhancing dye-semiconductor interactions will decrease the rate-controlling impedance and enhance cell performance.