02 دی 1403
صادق كريمي

صادق کریمی

مرتبه علمی: دانشیار
نشانی: دانشکده علوم و فناوری نانو و زیستی - گروه شیمی
تحصیلات: دکترای تخصصی / شیمی
تلفن: 07731222074
دانشکده: دانشکده علوم و فناوری نانو و زیستی

مشخصات پژوهش

عنوان Variable selection in multivariate calibration based on clustering of variable concept
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
ثبت نشده‌است!
مجله ANALYTICA CHIMICA ACTA
شناسه DOI
پژوهشگران مریم فرخ نیا (نفر اول) ، صادق کریمی (نفر دوم)

چکیده

Recently we have proposed a new variable selection algorithm, based on clustering of variable concept (CLoVA) in classification problem. With the same idea, this new concept has been applied to a regression problem and then the obtained results have been compared with conventional variable selection strategies for PLS. The basic idea behind the clustering of variable is that, the instrument channels are clustered into different clusters via clustering algorithms. Then, the spectral data of each cluster are subjected to PLS regression. Different real datasets (Cargill corn, Biscuit dough, ACE QSAR , Soy ,and Tablet) have been used to evaluate the influence of the clustering of variables on the prediction performances of PLS. Almost in the all cases, the statistical parameter especially in prediction error shows the superiority of CLoVA-PLS respect to other variable selection strategies. Finally the synergy clustering of variable (sCLoVA- PLS), which is used the combination of cluster, has been proposed as an efficient and modification of CLoVA algorithm. The obtained statistical parameter indicates that variable clustering can split useful part from redundant ones, and then based on informative cluster; stable model can be reached.