December 22, 2024
Sadegh Karimi

Sadegh Karimi

Academic Rank: Associate professor
Address: Department of Chemistry, Faculty of Nano, Bioscience and Technology
Degree: Ph.D in Chemistry
Phone: 07731222074
Faculty: Faculty of Nano and Biotechnology

Research

Title Development of a new colorimetric assay for detection of bisphenol-A in aqueous media using green synthesized silver chloride nanoparticles: experimental and theoretical study
Type Article
Keywords
Journal ANALYTICAL AND BIOANALYTICAL CHEMISTRY
DOI
Researchers Maryam Farrokhnia (Third researcher) , Sadegh Karimi (Fifth researcher)

Abstract

In the present study, a cost-effective, green and simple synthesis method was applied for preparation of stable silver chloride nanoparticles (AgCl-NPs). The method was done by forming AgCl-NPs from Ag ions using aqueous extract of brown algae (Sargassum boveanum) obtained from the Persian Gulf Sea. This extract served as capping agent during the formation of AgCl-NPs. Creation of AgCl-NPs was confirmed by UV–visible spectroscopy, powder X-ray diffraction, energy-dispersive X-ray spectroscopy, and highresolution transmission electron microscopy, while the morphology and size analyses were characterized using highresolution transmission electron microscopy and dynamic light scattering. After optimization of some experimental conditions, particularly pH, a simple and facile system was developed for the naked-eye detection of bisphenol-A. Moreover, a theoretical study of AgCl interaction with bisphenol-A was performed at the density functional level of theory in both gas and solvent phases. Theoretical results showed that electrostatic and van der Waal interactions play important roles in complexation of bisphenol-Awith AgCl-NPs, which can lead to aggregation of the as-prepared AgCl-NPs and results in color change from specific yellow to dark purple, where a new aggregation band induced at 542 nm appears. The absorbance at 542 nm was found to be linearly dependent on the bisphenol-A concentration in the range of 1 × 10?6–1 × 10?4 M, with limit of detection of 45 nM. In conclusion, obtained results from the present study can open up an innovative application of the green synthesis of AgCl-NPs using brown algae extract as colorimetric sensors