14 آذر 1404
سعيد طهماسبي

سعید طهماسبی

مرتبه علمی: دانشیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه آمار
تحصیلات: دکترای تخصصی / آمار ریاضی
تلفن: 077-31223329
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Robust Bayesian Structure Learning for Graphical Models with T-distributions using G-Wishart Prior
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Robust Bayesian structure learning, Gaussian graphical models, t-distributed graphical models, Birth-Death process, Birth-Death Markov chain Monte Carlo
مجله COMPUTATIONAL STATISTICS
شناسه DOI 10.1007/s00180-025-01621-6
پژوهشگران نسترن مرزبان واصل آبادی (نفر اول) ، سعید طهماسبی (نفر دوم) ، رضا محمدی (نفر سوم) ، حمید کرمی کبیر (نفر چهارم)

چکیده

Accurately interpreting complex relationships among many variables is of significant importance in science. One appealing approach to this task is Bayesian Gaussian graphical modeling, which has recently undergone numerous improvements. However, this model may struggle with datasets containing outliers; replacing Gaussian distributions with t-distributions enhances inferences and handles datasets with outliers. In this paper, we aim to address the challenges of Gaussian graphical models through t-distributions graphical models. To this end, we draw inspiration from the Birth-Death Monte Carlo Markov Chain (BDMCMC) algorithm and introduce a Bayesian method for structure learning in both classical and alternative t-distributions graphical models. We also demonstrate that the more flexible model outperforms the other when applied to more complex generated data. This is illustrated using a wide range of simulated datasets as well as a real-world dataset