14 آذر 1403
سعيد طلعتيان آزاد

سعید طلعتیان آزاد

مرتبه علمی: مربی
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه مهندسی کامپیوتر
تحصیلات: کارشناسی ارشد / مهندسی نرم افزار
تلفن: 0773344
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان Multi-modal classification of breast cancer lesions in Digital Mammography and contrast enhanced spectral mammography images
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Deep Learning; Neural Networks
مجله COMPUTERS IN BIOLOGY AND MEDICINE
شناسه DOI https://doi.org/10.1016/j.compbiomed.2024.109266
پژوهشگران نرجس بوذرجمهری (نفر اول) ، محمد برزگر (نفر دوم) ، حبیب رستمی (نفر سوم) ، احمد کشاورز (نفر چهارم) ، احمد نوید اصغری (نفر پنجم) ، سعید طلعتیان آزاد (نفر ششم به بعد)

چکیده

Breast cancer ranks as the second most prevalent cancer in women, recognized as one of the most dangerous types of cancer, and is on the rise globally. Regular screenings are essential for early-stage treatment. Digital mammography (DM) is the most recognized and widely used technique for breast cancer screening. Contrast-Enhanced Spectral Mammography (CESM or CM) is used in conjunction with DM to detect and identify hidden abnormalities, particularly in dense breast tissue where DM alone might not be as effective. In this work, we explore the effectiveness of each modality (CM, DM, or both) in detecting breast cancer lesions using deep learning methods. We introduce an architecture for detecting and classifying breast cancer lesions in DM and CM images in Craniocaudal (CC) and Mediolateral Oblique (MLO) views. The proposed architecture (JointNet) consists of a convolution module for extracting local features, a transformer module for extracting long-range features, and a feature fusion layer to fuse the local features, global features, and global features weighted based on the local ones. This significantly enhances the accuracy of classifying DM and CM images into normal or abnormal categories and lesion classification into benign or malignant. Using our architecture as a backbone, three lesion classification pipelines are introduced that utilize attention mechanisms focused on lesion shape, texture, and overall breast texture, examining the critical features for effective lesion classification. The results demonstrate that our proposed methods outperform their components in classifying images as normal or abnormal and mitigate the limitations of independently using the transformer module or the convolution module. An ensemble model is also introduced to explore the effect of each modality and each view to increase our baseline architecture's accuracy. The results demonstrate superior performance compared with other similar works. The best performance on DM images