13 اردیبهشت 1403

محمد محمدی باغملایی

مرتبه علمی:
نشانی: -
تحصیلات: دکترای تخصصی / -
تلفن: -
دانشکده:

مشخصات پژوهش

عنوان
Improvement of Energy Efficiency in Gas Condensate StabilizationUnit: Process Optimization Through Exergy Analysis
نوع پژوهش مقالات در همایش ها
کلیدواژه‌ها
Condensate stabilization, Exergy analysis, Energy optimization, Process modeling, CO2emissions
پژوهشگران عبداله حاجی زاده (نفر اول) ، محمد محمدی باغملایی (نفر دوم) ، فاطمه سادات میرقادری (نفر سوم) ، رضا آذین (نفر چهارم) ، سهراب زنده بودی (نفر پنجم) ، تقی سنایی (نفر ششم به بعد) ، حمید رجایی ابرقویی (نفر ششم به بعد) ، سجاد کشاورزیان (نفر ششم به بعد)

چکیده

Gas condensate stabilization is a common process in gas refineries and petrochemical industries. Thisprocess is energy-consuming since it uses distillation columns and furnaces to separate different cutsfrom the condensate feed. This study aims to improve the performance of the gas condensate stabilizationunit in a large petrochemical company in terms of energy efficiency and loss prevention. The case underinvestigation is the gas condensate stabilization unit in the Nouri Petrochemical Company, treating 568 t/hof raw condensate feed. This plant includes two distillation columns, two furnaces, pumps, heat exchangers,and air coolers. A hybrid energy and exergy analysis is conducted in this study. First, the validation of thesimulation phase is performed, and a parametric sensitivity analysis is conducted to explore the effects ofvarious parameters, such as operating temperature and pressure, on the process performance. After that,the most influential variables are identified using thermodynamic analyses for optimization and designpurposes. An optimization method is employed to attain the maximum production improvement and exergyefficiency. The exergy analysis shows 187.4 MW total exergy destruction in the plant; furnaces account for79% of the total exergy destruction. According to the sensitivity analysis results, the energy consumptionof the process could be reduced by 33.7 MW; this is an 18% reduction in the plant's energy consumption.The optimal process conditions outperform the current and design states (4.6% improvement in exergyefficiency). The fuel gas consumption is reduced by 2.1 t/h, leading to a reduction of 128 t/d CO2 emissions